Discrete Math 4/28

Quick Review of Logs

Logarithm

㸚 Language

In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x. In the simplest case, the logarithm counts the number of occurrences of the same factor in repeated multiplication; e.g., since $1000=10 \times 10 \times 10=10^{3}$, the "logarithm base 10" of 1000 is 3 , or $\log _{10}(1000)=3$. The logarithm of x to base b is denoted as $\log _{b}(x)$, or without parentheses, $\log _{b} x$, or even without the explicit base, $\log x$, when no confusion is possible, or when the base does not matter such as in big O notation.

Quick Review of Logs

- $\log _{b}(x)=w \equiv b^{w}=x$
- which implies that $b^{\log _{b}(x)}=x$
- $\log _{x}(y)$ is approximately the number of digits needed to represent y in base- x
- The exact number is $1+\left\lfloor\log _{x}(y)\right\rfloor$
- $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$ and its related identities:
- $\log _{a}\left(b^{n}\right)=n \log _{a}(b)$ and
- $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
- $\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}-$ i.e., changing base is multiplying by a constant

How do we show that $\log _{2} 3$ is irrational?

$\log _{2} 3$ is irrational (aussion 47)

Proof. $\log _{2} 3 \notin \mathrm{Q}$
We proceed by contradiction.
Assume that $\log _{2} 3 \in Q$. Reminder that $Q=\left\{x|y| x \in Z\right.$ and $\left.y \in Z^{+}\right\}$
So, $\log _{2} 3=x / y$ where $x \in Z$ and $y \in Z^{+}$
Moving the denominator over, $\mathrm{y}^{*} \log _{2} 3=\mathrm{x}$
Using the log power rule, $\log _{2}\left(3^{y}\right)=x$
By definition of logs, $3^{y}=2^{x}$
Considering that both x and y are integers, 3^{y} and 2^{x} must also be integers. The fundamental theorem of arithmetic states that any integer can be represented as a unique product of prime numbers. The two exponentiations clearly don't share the same prime factors so walla! A clear contradiction. Because the assumption led to a contradiction, it must be false and $\log _{2} 3 \notin Q$.

How do we show that $\log _{8} 9$ is irrational?

$\log _{8} 9$ is irrational

Proof. $\log _{8} 9 \ddagger Q$
We proceed by contradiction.
Assume that $\log _{8} 9 \in Q$. Reminder that $Q=\left\{x|y| x \in Z\right.$ and $\left.y \in Z^{+}\right\}$
So, $\log _{8} 9=x / y$ where $x \in Z$ and $y \in Z^{+}$
Moving the denominator over, $\mathrm{y}^{*} \log _{8} 9=x$
Using the \log power rule, $\log _{8}\left(9^{y}\right)=x$
By definition of logs, $8^{y}=9^{x}$
We can simplify this further $\left(2^{3}\right)^{y}=\left(3^{2}\right)^{x} \rightarrow 2^{3 y}=3^{2 x}$
Considering that both x and y are integers, $2^{3 y}$ and $3^{2 y x}$ must also be integers. The fundamental theorem of arithmetic states that any integer can be represented as a unique product of prime numbers. The two exponentiations clearly don't share the same prime factors so walla! A clear contradiction. Because the assumption led to a contradiction, it must be false and $\log _{8} 9 \notin Q$.

How do we show that $\log _{8} 4$ is irrational?

Hm is $\log _{8} 4$ even irrational?

Proof. $\log _{8} 4 母$ Q

We proceed by contradiction.
Assume that $\log _{8} 4 \in Q$. Reminder that $Q=\left\{x / y \mid x \in Z\right.$ and $\left.y \in Z^{+}\right\}$
So, $\log _{8} 4=x / y$ where $x \in Z$ and $y \in Z^{+}$
Moving the denominator over, $y^{*} \log _{8} 4=x$
Using the log power rule, $\log _{8}\left(4^{\mathrm{y}}\right)=\mathrm{x}$
By definition of logs, $4^{y}=8^{x}$
We can simplify this further $\left(2^{2}\right)^{y}=\left(2^{3}\right)^{x} \rightarrow 2^{2 y}=2^{3 x}$
Considering that both x and y are integers, $2^{2 y}$ and $2^{3 \mathrm{x}}$ must also be integers. The fundamental theorem of arithmetic states that any integer can be represented as a unique product of prime numbers. Unlike the two previous cases, the two exponentiations share prime factors. In fact, the two have the same factorization when $x=2 y / 3$ and $y=3 n$ where $n \in Z^{+}$. A contradiction is not reached...

Log Identity Practice

Question 34 (see above)

$\log _{\sqrt{3}}(5)=\log _{3}($
)
Question 35 (see above)
$\log _{a}(b) \log _{a}(\quad)=1$

Question 38 (see above)
$3^{\log _{5}(7)}=7^{\log _{\square}(\square)}$

Log Identity Practice

Question 34 (see above)

$$
\begin{aligned}
& \log _{\sqrt{3}}(5)= \log _{3}(\\
& \begin{aligned}
\log _{\text {sqrt }(3)} 5 & =\log _{3} 5 / \log _{3}(\sqrt{ } 3) \\
& =\log _{3} 5 / 0.5 \\
& =2^{*} \log _{3} 5 \\
& =\log _{3} 25
\end{aligned}
\end{aligned}
$$

Question 35 (see above)

$$
\begin{aligned}
& \log _{a}(b) \log _{a}(\\
& \log _{\mathrm{a}}(\mathrm{~b})^{\star} \log _{\mathrm{a}}(?)=1 \\
& \log _{\mathrm{a}}(?)=1 / \log _{\mathrm{a}}(\mathrm{~b}) \\
& ?=\mathrm{a}^{1 / \log _{_} \mathrm{a}(\mathrm{~b})} \\
& ?=a^{\log _{_} \mathrm{a}(\mathrm{a}) / \log _{_} \mathrm{a}(\mathrm{~b})} \\
& ?=a^{\log _{_} \mathrm{b}(\mathrm{a})}
\end{aligned}
$$

Question 38 (see above)

$$
\begin{aligned}
& 3^{\log _{5}(7)}=7^{\log _{\square}(\square)} \\
& \log _{7}\left(3^{\log _{-} 5(7)}\right)=\log _{x}(y) \\
& \log _{5}(7)^{*} \log _{7}(3)=\log _{x}(y) \\
& \left(\log _{7}(7) / \log _{7}(5)\right)^{*} \log _{7}(3)=\log _{x}(y) \\
& \log _{7}(3) / \log _{7}(5)=\log _{x}(y) \\
& \log _{5}(3)=\log _{x}(y) \\
& x=5, y=3
\end{aligned}
$$

How do we prove that $\forall n \in Z^{+} . \log _{n+2}(n+1) \notin$ Z?

$\forall \mathrm{n} \in \mathrm{Z}^{+} . \log _{\mathrm{n}+2}(\mathrm{n}+1) \notin \mathrm{Z}_{\text {(Praticie Poboem 51) }}$

Proof. $\forall \mathrm{n} \in \mathrm{Z}^{+} . \log _{\mathrm{n}+2}(\mathrm{n}+1) \notin \mathrm{Z}$
We proceed by contradiction.
Assume that for all $n \in Z^{+}, \log _{n+2}(n+1) \in Z$.

- So, that means that for all $n \in Z^{+}$there must exist an $x \in Z$ such that $\log _{n+2}(n+1)=x$
- By definition, $(n+2)^{x}=n+1$
- Because x is an integer, both sides are integers and they must have the same prime factorization as per the fundamental theorem of arithmetic.
- Remember, all factors of $(n+2)^{x}$ are also that of $(n+2)$
- So, all prime factors of $(n+2)$ must also be that of $(n+1)$.
- What next?

How do we prove that $n+2$ and $n+1$ can't share prime factors?

$\forall \mathrm{n} \in \mathrm{Z}^{+} . \log _{\mathrm{n}+2}(\mathrm{n}+1) \notin \mathrm{Z}$ Continued ${ }_{(\text {Praticie Pobolem } 51)}$

To prove that for all $n \in Z^{+}, n+2$ and $n+1$ do not share prime factors, we proceed by contradiction

- We assume that there exists a prime number p which is a factor of $n+2$ and $n+1$.
- So, $(n+2) / p \in Z^{+}$and $(n+1) / p \in Z^{+}$
- That means for some integer $k, n+1=p^{*} k$
- If we add one to both sides, $n+2=p * k+1$
- \quad Substituting that back into $(n+2) / p \in Z^{+},\left(p^{*} k+1\right) / p \in Z^{+}$
- Simplifying that slightly, $\left(p^{*} k\right) / p+1 / p \in Z^{+}$
- Again, $k+1 / p \in Z^{+}$
- Considering that p is a prime, which is greater than 1 , we know that $1 / p$ can not be an integer. With k being an integer, we know that $k+1 / p$ can't be an integer and p is not a factor of $n+2$.
- This leads to a contradiction. $n+2$ and $n+1$ can't share factors.

$\forall \mathrm{n} \in \mathrm{Z}^{+} . \log _{\mathrm{n}+2}(\mathrm{n}+1) \notin \mathrm{Z}$ Continued ${ }_{\text {Practicie Poobem 51) }}$

Proof. $\forall \mathrm{n} \in \mathrm{Z}^{+} . \log _{\mathrm{n}+2}(\mathrm{n}+1) \notin \mathrm{Z}$
We proceed by contradiction.
Assume that for all $n \in Z^{+}, \log _{n+2}(n+1) \in Z$.

- So, that means that for all $n \in Z^{+}$there must exist an $x \in Z$ such that $\log _{n+2}(n+1)=x$
- By definition, $(n+2)^{x}=n+1$
- Because x is an integer, both sides are integers and they must have the same prime factorization as per the fundamental theorem of arithmetic.
- Remember, all factors of $(n+2)^{x}$ are also that of $(n+2)$
- So, all prime factors of $(n+2)$ must also be that of $(n+1)$.
- As in the previous slide, $\mathrm{n}+1$ and $\mathrm{n}+2$ share no prime factors and can't have the same prime factorization.
- Aha! Contradiction!

Because assuming that $\log _{n+2}(n+1)$ was an integer led to a contradiction, it must not be an integer.
It follows that $\forall n \in Z^{+} . \log _{n+2}(n+1) \notin Z$.

Questions?

