Discrete Math 4/28

Quick Review of Logs

Logarithm

文_A Language

🕁 Watch 🛛 🖋 Edit

In mathematics, the **logarithm** is the inverse function to exponentiation. That means the logarithm of a given number *x* is the exponent to which another fixed number, the *base b*, must be raised, to produce that number *x*. In the simplest case, the logarithm counts the number of occurrences of the same factor in repeated multiplication; e.g., since $1000 = 10 \times 10 \times 10 = 10^3$, the "logarithm base 10" of 1000 is 3, or $log_{10}(1000) = 3$. The logarithm of *x* to *base b* is denoted as $log_b(x)$, or without parentheses, $log_b x$, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.

Quick Review of Logs

- $\bullet \ \log_b(x) = w \equiv b^w = x$
 - \circ which implies that $b^{\log_b(x)} = x$

• $\log_x(y)$ is approximately the number of digits needed to represent y in base-x

- \circ The exact number is $1 + \lfloor \log_x(y) \rfloor$
- $\log_b(xy) = \log_b(x) + \log_b(y)$ and its related identities:

$$\circ \log_a(b^n) = n \log_a(b)$$
 and
 $\circ \log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$
• $\log_b(x) = \frac{\log_a(x)}{\log_a(b)} - i.e.$, changing base is multiplying by a constant

How do we show that log₂3 is irrational?

log₂3 is irrational (Question 47)

Proof. $\log_2 3 \notin Q$

We proceed by contradiction.

Assume that $\log_2 3 \in \mathbb{Q}$. Reminder that $\mathbb{Q} = \{x/y \mid x \in \mathbb{Z} \text{ and } y \in \mathbb{Z}^+\}$

```
So, \log_2 3 = x/y where x \in Z and y \in Z^+
```

Moving the denominator over, $y^{1}\log_{2}3 = x$

```
Using the log power rule, \log_2(3^y) = x
```

By definition of logs, $3^y = 2^x$

Considering that both x and y are integers, 3^{y} and 2^{x} must also be integers. The fundamental theorem of arithmetic states that any integer can be represented as a unique product of prime numbers. The two exponentiations clearly don't share the same prime factors so walla! A clear contradiction. Because the assumption led to a contradiction, it must be false and $\log_{2} 3 \notin Q$.

How do we show that $\log_8 9$ is irrational?

log₈9 is irrational

Proof. log₈9 ∉ Q

We proceed by contradiction.

Assume that $\log_{8}9 \in \mathbb{Q}$. Reminder that $\mathbb{Q} = \{x/y \mid x \in \mathbb{Z} \text{ and } y \in \mathbb{Z}^{+}\}$

So, $\log_8 9 = x/y$ where $x \in Z$ and $y \in Z^+$

Moving the denominator over, $y^*\log_8 9 = x$

Using the log power rule, $\log_8 (9^y) = x$

By definition of logs, $8^{y} = 9^{x}$

We can simplify this further $(2^3)^y = (3^2)^x \rightarrow 2^{3y} = 3^{2x}$

Considering that both x and y are integers, 2^{3y} and 3^{2yx} must also be integers. The fundamental theorem of arithmetic states that any integer can be represented as a unique product of prime numbers. The two exponentiations clearly don't share the same prime factors so walla! A clear contradiction. Because the assumption led to a contradiction, it must be false and $\log_8 9 \notin Q$.

How do we show that log₈4 is irrational?

Hm is log₈4 even irrational?

Proof. log₈4 ∉ Q

We proceed by contradiction.

Assume that $\log_{R} 4 \in \mathbb{Q}$. Reminder that $Q = \{x/y \mid x \in \mathbb{Z} \text{ and } y \in \mathbb{Z}^+\}$

So, $\log_8 4 = x/y$ where $x \in \mathbb{Z}$ and $y \in \mathbb{Z}^+$

Moving the denominator over, $y^* \log_8 4 = x$

Using the log power rule, $\log_{8}(4^{y}) = x$

By definition of logs, $4^y = 8^x$

We can simplify this further $(2^2)^y = (2^3)^x \rightarrow 2^{2y} = 2^{3x}$

Considering that both x and y are integers, 2^{2y} and 2^{3x} must also be integers. The fundamental theorem of arithmetic states that any integer can be represented as a unique product of prime numbers. Unlike the two previous cases, the two exponentiations share prime factors. In fact, the two have the same factorization when x = 2y/3 and y=3n where $n \in Z^+$. A contradiction is not reached...

Log Identity Practice

Question 34 (see above)

Question 35 (see above)

 $\log_{\sqrt{3}}(5) = \log_3\left(\hspace{1cm}
ight) \hspace{1cm} \log_a(b)\log_a\left(\hspace{1cm}
ight)
ight)$

) = 1

Question 38 (see above)

 $3^{\log_5(7)}=7^{\log_\square(\square)}$

Log Identity Practice

Question 34 (see above)

 $log_{\sqrt{3}}(5) = log_{3} \left(\right)$ $log_{sqrt(3)} 5 = log_{3} 5 / log_{3}(\sqrt{3})$ $= log_{3} 5 / 0.5$ $= 2*log_{3} 5$ $= log_{3} 25$

Question 35 (see above) $\log_a(b)\log_a($) = 1 $\log_{a}(b)*\log_{a}(?) = 1$ $\log_{2}(?) = 1/\log_{2}(b)$ $? = a^{1/\log_a(b)}$ $? = a^{\log_a(a)/\log_a(b)}$ $2 = a^{\log_b(a)}$

Question 38 (see above)

 $3^{\log_{5}(7)} = 7^{\log_{\Box}(\Box)}$ $\log_{7}(3^{\log_{5}(7)}) = \log_{x}(y)$ $\log_{5}(7)^{*}\log_{7}(3) = \log_{x}(y)$ $(\log_{7}(7)/\log_{7}(5))^{*}\log_{7}(3) = \log_{x}(y)$ $\log_{7}(3)/\log_{7}(5) = \log_{x}(y)$ $\log_{5}(3) = \log_{x}(y)$ x=5, y=3

How do we prove that $\forall n \in Z^+$. $\log_{n+2}(n+1) \notin Z^?$

$\forall n \in Z^+$. $\log_{n+2}(n+1) \notin Z_{(Practice Problem 51)}$

Proof. \forall n \in Z⁺.log_{n+2}(n+1) \notin Z

We proceed by contradiction.

Assume that for all $n \in Z^+$, $\log_{n+2}(n+1) \in Z$.

- So, that means that for all $n \in Z^+$ there must exist an $x \in Z$ such that $\log_{n+2}(n+1) = x$
- By definition, $(n+2)^x = n+1$
- Because x is an integer, both sides are integers and they must have the same prime factorization as per the fundamental theorem of arithmetic.
 - Remember, all factors of $(n+2)^x$ are also that of (n+2)
 - So, all prime factors of (n+2) must also be that of (n+1).
- What next?

How do we prove that n+2 and n+1 can't share prime factors?

$\forall n \in Z^+$. $\log_{n+2}(n+1) \notin Z$ Continued (Practice Problem 51)

To prove that for all $n \in Z^+$, n+2 and n+1 do not share prime factors, we proceed by contradiction

- We assume that there exists a prime number p which is a factor of n+2 and n+1.
 - So, $(n+2)/p \in Z^+$ and $(n+1)/p \in Z^+$
 - That means for some integer k, n+1=p*k
 - If we add one to both sides, n+2=p*k+1
 - Substituting that back into $(n+2)/p \in Z^+$, $(p^*k+1)/p \in Z^+$
 - Simplifying that slightly, $(p^*k)/p + 1/p \in Z^+$
 - Again, $k+1/p \in Z^+$
- Considering that p is a prime, which is greater than 1, we know that 1/p can not be an integer. With k being an integer, we know that k+1/p can't be an integer and p is not a factor of n+2.
- This leads to a contradiction. n+2 and n+1 can't share factors.

$\forall n \in Z^+$. $\log_{n+2}(n+1) \notin Z \text{ Continued}_{(Practice Problem 51)}$

Proof. \forall n \in Z⁺.log_{n+2}(n+1) \notin Z

We proceed by contradiction.

Assume that for all $n \in Z^+$, $\log_{n+2}(n+1) \in Z$.

- So, that means that for all $n \in Z^+$ there must exist an $x \in Z$ such that $\log_{n+2}(n+1) = x$
- By definition, $(n+2)^x = n+1$
- Because x is an integer, both sides are integers and they must have the same prime factorization as per the fundamental theorem of arithmetic.
 - Remember, all factors of $(n+2)^x$ are also that of (n+2)
 - So, all prime factors of (n+2) must also be that of (n+1).
- As in the previous slide, n+1 and n+2 share no prime factors and can't have the same prime factorization.
- Aha! Contradiction!

Because assuming that $\log_{n+2}(n+1)$ was an integer led to a contradiction, it must not be an integer.

It follows that $\forall n \in Z^+$.log_{n+2}(n+1) $\notin Z$.

Questions?